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The critical length is a crucial notion attached to kernels of linear differential operators L with constant
coefficients, which was first introduced in [2]. Such kernels are known to advantageously replace polynomial
spaces because, unlike them, they inherently depend on parameters which can be used to interactively modify
the solution to classical problems (e.g., interpolation, design, approximation). Nevertheless, to take benefit of
these parameters it may be necessary to restrict the length of the interval [a, b] we are working on. For instance,
for a given L, if we are interested in Hermite interpolation, E := kerL must be an Extended Chebyshev space
on [a, b]. This is ensured if and only the length b− a is less than a fixed number ` ∈]0,+∞]. This number ` is
referred to as the critical length of L (or of E). It is well known that ` = +∞ if and only if the characteristic
polynomial of L has only real roots. If we want to use E for design [5], we have to require E to contain the
constants and the length b − a to be less than the critical length of the space DE obtained by differentiation,
which is less than or equal to the critical length of E.

We can therefore see the importance of determining the critical length of L when the characteristic polynomial
of L has at least one non-real root. The classical approach consists in finding the smallest positive zero of a
number of Wronskians attached to L [2, 6]. As an example, in the simplest case of cycloidal spaces (i.e., spaces
spanned by polynomials of some degree and the two functions cos and sin) the critical lengths were studied in
[2, 3] and definitely identified as zeros of Bessel functions in [4].

Unfortunately, this Wronskian approach is generally difficult to carry out in practice, all the more so as
the dimension increases. This motivated us to develop an effective numerical procedure instead, which we will
present in this talk. This procedure is obtained as a special case of a numerical test built in [1] to determine
whether or not a given space produced by connecting different Extended Chebyshev spaces on adjacent intervals
via connection matrices can be used for design. Moreover, an advantage of the proposed algorithm is that it
simultaneously provides the Bernstein-type bases which we can use for numerical computations. Examples
illustrate the efficiency of this alternative approach both for the computation of the critical lengths and for
handling parametric curves.

Joint work with: Giulio Casciola, Marie-Laurence Mazure.
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