Interpolation of scattered data in \mathbb{R}^{3} using minimum L_{p}-norm networks, $1<p \leq \infty$

Krassimira Vlachkova
Faculty of Mathematics and Informatics, Sofia University "St. Kliment Ohridski"
Blvd. James Bourchier 5, 1164 Sofia, Bulgaria
krassivl@fmi.uni-sofia.bg

We consider the extremal problem of interpolation of scattered data in \mathbb{R}^{3} by smooth curve networks with minimal L_{p}-norm of the second derivative for $1<p \leq \infty$. The problem for $p=2$ was set and solved by Nielson [1]. Andersson et al. [2] gave a new proof of Nielson's result by using a different approach. It allowed them to set and solve the constrained extremal problem of interpolation of convex scattered data in \mathbb{R}^{3} by minimum L_{2}-norm networks that are convex along the edges of an associated triangulation. Partial results for the unconstrained and the constrained problems were announced without proof in [3]. Here we present complete characterization of the solutions to both the unconstrained and the constrained problems for $1<p \leq \infty$.

References

[1] G. M. Nielson. A method for interpolating scattered data based upon a minimum norm network. Mathematics of Computation, 40(161):253-271, 1983.
[2] L.-E. Andersson, T. Elfving, G. Iliev, K. Vlachkova. Interpolation of convex scattered data in \mathbb{R}^{3} based upon an edge convex minimum norm network. Journal of Approximation Theory, 80(3):299-320, 1995.
[3] K. Vlachkova. Interpolation of convex scattered data in \mathbb{R}^{3} based upon a convex minimum L_{p}-norm network. Comptes Rendus de l'Académie Bulgare des Sciences, 45(12):13-15, 1992.

