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Introduction We aim to recover accurately the amplitudes ai ∈ C and positions xi ∈ Td (T is the torus) of a
discrete Radon measure µ0 =

∑r
i=1 aiδxi given low-resolution and noisy observations y = Φµ0+w. The measure-

ments consist in a finite number of Fourier moments Φµ =
∫
Td φ(x)dµ(x), with φ(x) = (cke

−2iπ〈k, x〉)k∈J−fc,fcKd .
Such super-resolution problems naturally arise in medical, astronomical or microscopy imaging. They can be
tackled using total variation regularization, which generalizes `1-regularization to measure spaces [2]:

min
µ∈M(Td)

1

2λ
||y − Φµ||2 + |µ|(Td), (1)

where |µ|(Td) is the total variation of µ, i.e. its total mass, and λ > 0 depends on the noise level ||w||. Our main
contribution is a new solver for this infinite-dimensional problem, which requires only O(fdc log fc) elementary
computations per iterations, thus making it scalable in multi-dimensional settings (d > 1).

Semidefinite relaxations In 1-D, (1) may be solved exactly by lifting to a semidefinite program in O(f2dc )
variables [1, Section 4]. In 2-D and beyond, it may be approximated to arbitrary precision by semidefinite
liftings of increasing size [3]. While usual interior points methods are limited in these high-dimensional settings,
the solver we propose scales well with the size of the problems. The semidefinite relaxation of (1) reads

min
τ,z,u

τ + u0 +
1

2
|| y
λ

+ 2z||2 ; (a)
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]
� 0,

z̃k = zk, k ∈ J−fc, fcKd
and (b)R =

∑
k∈K−m,mJd

ukΘk

 , (2)

with Θk = θkd⊗ . . .⊗θk1 , where θkj is the (Tœplitz) matrix with ones on the kj-th diagonal and zeros elsewhere,
and ⊗ is the Kronecker product. R may be interpreted as a moment matrix associated to the measure µλ solving
(1); in particular, one may retrieve from R the positions and amplitudes of the spikes composing µλ.

Proposition 1 (Low-rank solutions) In 1-D, (2) admits a solution Rλ such that rankRλ ≤ r, r being the
number of Diracs composing µλ. This result appears to hold in 2-D (from numerical evidences).

FFT-based Frank-Wolfe solver To solve (2), we penalize constraint (b) in the objective f and apply Frank-
Wolfe algorithm [4] to the resulting semidefinite program. Iterates are stored as R = UU∗. Frank-Wolfe’s oracle
over the semidefinite cone is given by a leading eigenvector of ∇f , which we compute using power iterations.
This is done efficiently in O(fdc log fc), exploiting the connection between Tœplitz matrices and the Fast Fourier
Transform. We further add a non convex BFGS update on U after each Frank-Wolfe step. Our algorithm
appears to converge in exactly r steps, r being the number of spikes in µλ. We will soon have results on data
from the Single-Molecule Localization Microscopy (SMLM) challenge [5].
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