Kinematic interpretation of quaternionic-Bézier curves and surfaces

Rimvydas Krasauskas and Severinas Zube
Vilnius University, Lithuania
rimvydas.krasauskas@mif.vu.lt

Quaternion-Bézier (QB) surfaces were introduced in [2] as a tool for parametrizing Dupin cyclides and more general Darboux cyclides. Recently in [4] it was noticed that Darboux cyclides are orbits of simple 2-parameter motions in \mathbb{R}^{3}. This was an initial insight that inspired the results presented in the current abstract.

Let us define a rational motion of several parameters as a motion with only rational trajectories. The group of rigid body displacements $S E(3)$ can be identified with the Study quadric $\mathbb{S} \subset \mathbb{R} P^{7}$ minus certain exceptional 3-dimensional projective subspace E : using the dual quaternions $h=p+\varepsilon q, p, q \in \mathbb{H}, \varepsilon^{2}=0$ as the homogeneous coordinates in $\mathbb{R} P^{7}$, the equations of \mathbb{S} and E are $p \bar{q}+q \bar{p}=0$ and $p=0$, respectively.

A dual quaternion $h=p+\varepsilon q \in \mathbb{S} \backslash E$ acts on $\mathbb{R}^{3}=\operatorname{Im} \mathbb{H}$ by Study's kinematic mapping

$$
\begin{equation*}
x \mapsto \frac{p x \bar{p}+p \bar{q}-q \bar{p}}{p \bar{p}}=\frac{p x \bar{p}-2 q \bar{p}}{p \bar{p}}=(p x-2 q) p^{-1} . \tag{1}
\end{equation*}
$$

If $h=p+\varepsilon q$ is polynomial of several variables t_{1}, \ldots, t_{n} with dual quaternion coefficients then for any fixed $x \in \mathbb{R}^{3}$ the formula (1) defines the fraction of quaternion polynomials $(p x-2 q) p^{-1}$, i.e. for $n=1,2$ this is a QB curve or surface, if the Bernstein basis is used. Therefore, motion polynomials of 1 and 2 variables define QB curves and surfaces as their trajectories.

This kinematic interpretation of QB curves and surfaces leads to several conclusions:

- According to [3] for a given rational trajectory curve there is a constructive procedure how to find the corresponding rational motion of minimal degree; the same algorithm can be applied directly for QB representation of any rational curve.
- Any rational surface patch on the sphere can be uniquely represented as QB-surface of twice less degree (see $[1,2]$); in the kinematic interpretation this gives the unique spherical motion of minimal degree generalizing [3].
- The latter result cannot be extended to arbitrary rational 2-parameter motions; a counter-example will be presented: the translational surface generated by two non-cospherical circles in \mathbb{R}^{3}.
Other results are related to rational parametrizations of Darboux cyclides, which can be of three topological types (here singular cases are excluded): (a) torus topology T^{2}; (b) one real spherical component S^{2}; (c) two real spherical components $S^{2} \sqcup S^{2}$. In the case (a) several different bilinear QB parametrization were reported in [2]. Here we present multi-linear parametrizations in \mathbb{S} that covers several bilinear cases at once. The case (b) corresponds to oval 2-dimensional quadratics in \mathbb{S} which generate triangular QB-patches of degree 2. The case (c) is the most complicated, since \mathbb{R}-birational parametrization is not possible, and both components are separately parametrized by certain quartic surfaces in \mathbb{S} which define QB-patches of bidgeree $(1,2)$.

References

[1] R. Krasauskas. Bezier patches on almost toric surfaces. In: Elkadi, M., Mourrain, B. and Piene, R. (eds.), Algebraic Geometry and Geometric Modeling, Springer, pages 135-150, 2006.
[2] R. Krasauskas, S. Zube. Rational Bezier formulas with quaternion and Clifford algebra weights,. In: Tor Dokken, Georg Muntingh (eds.), SAGA - Advances in ShApes, Geometry, and Algebra, Geometry and Computing, vol. 10, Springer, pages 147-166, 2014.
[3] Z. Li, J. Schicho, H.-P.Schröcker. The rational motion of minimal dual quaternion degree with prescribed trajectory. Computer Aided Geometric Design, 41:1-9, 2016.
[4] N. Lubbes, J. Schicho. Linear Sections of the Study Quadric. Talk at the Conference on Geometry: Theory and Applications, Pilsen, 2017.

