# Bivariate polynomial interpolation on interlacing lattices 

Michael Floater<br>University of Oslo<br>michaelf@math.uio.no

The question of whether polynomial interpolation in two variables is well defined, or 'unisolvent', depends not only on the number of points but on their positions. For polynomial degree $n$ we need $N=(n+2)(n+1) / 2$ points, i.e., 3 points for degree 1, 6 points for degree 2 , 10 points for degree 3 , and so on. Two well-known classes of point configurations for which interpolation is unisolvent are the principal lattice, a triangular grid, and the natural lattice, the intersections of non-parallel lines.

In this talk I will discuss the interlacing lattice and why it too is unisolvent. This lattice is the union of two interlacing rectangular grids, one square, the other quasi-square. For example, for degree 1 , the quasi-square grid is $2 \times 1$ and the square one is $1 \times 1$. For degree 2 , the square grid is $2 \times 2$ and the quasi-square one is $2 \times 1$. For degree 3 , the quasi-square grid is $3 \times 2$ and the square one is $2 \times 2$, and so on. This lattice includes the so-called Padua points, generated by Lissajou curves, as a special case.

Unisolvence is due to the non-singularity of the leading principal submatrices of certain univariate divided difference matrices. I will try to give some simple examples of this.

