Greedy measurement selection for state estimation

James Nichols Laboratoire Jacques-Louis Lions, Sorbonne Université nichols@ljll.math.upmc.fr

Inspired by the problem of approximating solutions of parametric PDEs where the solution depends smoothly on a high or infinite dimensional parameter, we are interested in approximating an element u which is known to lie on a smooth compact manifold \mathcal{M} in an ambient Hilbert space V. We can approximate the manifold by a linear space V_n , where n is of moderate dimension such that \mathcal{M} is never too far from V_n , that is, dist $(u, V_n) \leq \varepsilon$ for any $u \in \mathcal{M}$. Otherwise, our only assumed knowledge of u is m observed linear measurements of u of the form $\ell_i(u) = \langle w_i, u \rangle$, $i = 1, \ldots, m$, where $\ell_i \in V'$ and w_i are the Riesz representers, and we write $W_m =$ span $\{w_1, \ldots, w_m\}$.

In this setting, the observed measurements and V_n can be combined to produce an approximation u^* of u up to accuracy

$$\|u - u^*\| \le \beta^{-1}(V_n, W_m) \varepsilon$$

where

$$\beta(V_n, W_m) := \inf_{v \in V_n} \frac{\|P_{W_m}v\|}{\|v\|}$$

plays the role of a stability constant. For a given V_n , one relevant objective is to guarantee that $\beta(V_n, W_m) \ge \gamma > 0$ with a number of measurements $m \ge n$ as small as possible.

Assuming that the measurement functionals ℓ_i belong to a complete dictionary, we propose and study certain a algorithm for their selection. This algorithm may be viewed as a "collective" version the well-known orthogonal matching pursuit (OMP) algorithm, where the single function to be approximated by the elements from the dictionary is replaced by the unit ball of the space V_n .

Joint work with: A. Cohen, O. Mula, P. Binev, R. DeVore