Webs of rational curves on surfaces
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Lines play a central role in Euclidean geometry and are rational curves of minimal degree. Through any
two points in the plane exists a unique line and the family of lines in the plane is 2-dimensional. A simple
family is an algebraic family of minimal degree rational curves that covers a real surface X C P", such that a
general curve in this family is smooth outside the singular locus of X. Moreover, we assume that the dimension
of a simple family is as large as possible. A simple curve is a curve that belongs to some simple family. The
intersection product of two simple families that cover X is defined as the number of intersections between a
general curve in the first family and a general curve in the second family, outside the singular locus of X. The
simple family graph G(X) is defined as follows:

e Each vertex is a simple family of X. The vertex is labeled with the dimension of the simple family.

e We draw between two simple families an edge if their intersection product is at least two. We label the
edge with this intersection product.

For example, G(IP?) consists of a single vertex labeled 2. The graph G(S?) of the projective 2-sphere S? C P3
consists of a single vertex with label 3.
Theorem. If an edge in G(X) has label > 5, then G(X) has at most 2160 vertices. If G(X) contains a vertex
with label > 3 then X = S2.

Below are examples for G(X) in case simple curves are conics. We colored the vertices according to their
corresponding simple curves. All vertices are labeled 1 and all edges are labeled 2.
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In the images, black areas on the surface are bordered by exactly three simple curves. Many hexagonal patterns
emerge and therefore such families are also known as hezagonal webs [1]. Hexagonal webs of simple curves have
been characterized on the plane [2], on the sphere [4, 5, 3] and on Darboux cyclides [6]. The following theorem
is a characterization of hexagonal webs of simple curves on any algebraic surface.

Theorem. If X C P" is a surface, then simple families that correspond to three mutually disconnected vertices
in the graph G(X) form a hexagonal web.
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