Sparse high-dimensional FFT based on rank-1 lattice sampling and Prony's method

Daniel Potts

Faculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany potts@mathematik.tu-chemnitz.de

In this talk, we suggest approximate algorithms for the reconstruction of sparse high-dimensional trigonometric polynomials, where the support in frequency domain is unknown. Based on ideas of constructing rank-1 lattices component-by-component, we adaptively construct the index set of frequencies belonging to the non-zero Fourier coefficients in a dimension incremental way. When we restrict the search space in frequency domain to a full grid $[-N, N]^d \cap \mathbb{Z}^d$ of refinement $N \in \mathbb{N}$ and assume that the cardinality of the support of the trigonometric polynomial in frequency domain is bounded by the sparsity $s \in \mathbb{N}$, our method requires $\mathcal{O}(d s^2 N)$ samples and $\mathcal{O}(d s^3 + d s^2 N \log(s N))$ arithmetic operations in the case $\sqrt{N} \leq s \leq N^d$. Moreover, we discuss possibilities to reduce the number of samples and arithmetic operations by applying Prony's method. The number of samples is reduced to $\mathcal{O}(d s + d N)$ and the number of arithmetic operations is $\mathcal{O}(d s^3)$ in this case. Various numerical examples demonstrate the efficiency of the suggested method.

Joint work with: Lutz Kämmerer, Toni Volkmer

References

- L. Kämmerer, D. Potts, and T. Volkmer. High-dimensional sparse FFT based on sampling along multiple rank-1 lattices. arXiv:1711.05152, 2017.
- [2] D. Potts, and T. Volkmer. Sparse high-dimensional FFT based on rank-1 lattice sampling. Appl. Comput. Harm. Anal. 41, 713-748, 2016.
- [3] L. Kämmerer, D. Potts, and T. Volkmer. Approximation of multivariate functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complexity 31, 543-576, 2015.