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In 2005, Expo-rational B-splines were introduced, a blend-spline type of order 2, equivalent to ordinary linear
B splines, but where the control points were replaced by local curves or surfaces, [1]. In the following years, the
theory was extended from curves and tensor product surfaces to include triangular surfaces, surfaces based on
radial basic functions, surfaces on irregular grid and volumes. With regard to expo rational basic functions, the
theory was expanded a few years later with Beta function B-splines, a polynomial blending function. In 2015,
a complete generalization was introduced, where B-functions and their properties were introduced, [2].

Here we will use the framework of the blending spline, but now on any curve or tensor product surface in order
to edit (change shape) on these curves/surfaces. The local curves and surfaces are replaced by interpolation
points on a given curve or surface. In the curve case, the procedure is as follows:

- Given a curve c(t) (we call this the original curve).

- We then insert a knot vector {ti}n+1
i=0 to the curve. If the curve is open, we set the two first knots equal to the

start parameter value of the curve, and the two last knots equal to the end parameter value. The knot
vector divide the domain into n− 1 intervals.

- At each internal knot, {ti}ni=1, we now have a point c(ti) on the curve.

- To each of these n points we connect an homogenous k × k matrix, when the curve is embedded in Rk−1.

To compute the edited curve ĉ(t), we first find the index j such that tj ≤ t < tj+1,
the expression is:

ĉ(t) = [Mi + B ◦ wi(t)(Mi+1 −Mi)] c(t)

where B is a B-function, Mi is the homogeneous matrix at the knot ti, the index i is determined by tj ≤ t < tj+1

and

wi(t) =
t− ti

ti+1 − ti
.

A B-functions is a monotone permutation function B : I → I, I = [0, 1] ⊂ R, and where a given number of
subsequent derivatives are zero at start and end.

The result is that all parameterized curves and surfaces can be edited, the shape can be changed, by
inserting interpolating points that can be translated, scaled and rotated (affine maps). The concept of this will
be discussed further.
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