Vector versions of Prony's algorithm

Avram Sidi Technion - Israel Institute of Technology, Haifa, Israel asidi@cs.technion.ac.il

Given the scalar sequence $\{f_m\}_{m=0}^{\infty}$ that satisfies

$$f_m = \sum_{j=1}^k a_j \zeta_j^m, \quad m = 0, 1, \dots,$$

where $a_j, \zeta_j \in \mathbb{C}, j = 1, ..., k$, are independent of m, and ζ_j are distinct, the algorithm of Prony concerns the determination of the a_j and the ζ_j from the f_m . This algorithm is also related to Padé approximants from the infinite power series $\sum_{i=0}^{\infty} f_i z^i$.

In this talk, we discuss ways of extending Prony's algorithm to sequences of vectors $\{f_m\}_{m=0}^{\infty}$ in \mathbb{C}^N that satisfy

$$\boldsymbol{f}_m = \sum_{j=1}^k \boldsymbol{a}_j \zeta_j^m, \quad m = 0, 1, \dots,$$

where $a_j \in \mathbb{C}^N$ and $\zeta_j \in \mathbb{C}$, j = 1, ..., k. Two distinct problems arise depending on whether the vectors a_j are linearly independent or not. We consider different approaches that enable us to determine the a_j and ζ_j for these two problems, and develop suitable methods. We concentrate especially on extensions that take into account the possibility of the components of the a_j being coupled. One of the applications concern the determination of a number of the pairs (ζ_j, a_j) for which $|\zeta_j|$ are largest. Finally, we consider the more general case in which

$$\boldsymbol{f}_m = \sum_{j=1}^k \boldsymbol{p}_j(m) \zeta_j^m, \quad m = 0, 1, \dots,$$

where $p_j(m) \in \mathbb{C}^N$ are some (vector-valued) polynomials in m, and $\zeta_j \in \mathbb{C}, j = 1, ..., k$.

Finally, the methods suggested here can be extended to vector sequences in infinite dimensional spaces in a straightforward manner.