
Modified radial basis function partition of unity method

for solving problems in applications

R. Cavoretto

Department of Mathematics “G. Peano”, University of Torino, Italy

roberto.cavoretto@unito.it

The Partition of Unity Method (PUM) combined with Radial Basis Functions (RBFs) is known to be a
computational technique, which enables one to efficiently and accurately solve big interpolation and differential
problems [5, 3, 4]. Basically, the idea of PUM is to decompose the domain into a number of subdomains (or
patches) forming a covering of it and constructing then a local RBF approximant on each of these subdomains.
Generally, if we have to deal with quite uniform or regular data, a standard RBF-PUM interpolation scheme
can effectively work with hyperspherical subdomains (balls) of fixed radius [1]. When data are instead non
uniform or very irregularly distributed, we need a method that allows us to automatically select subdomains
of variable radius and isotropic RBF interpolants with optimal shape parameters [2]. Here we propose some
modifications to numerically solve interpolation problems on particular data sets and elliptic PDEs. Some
numerical experiments are presented.
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