Adaptive anisotropic approximation of multivariate functions by piecewise constants

Oleksandr Kozynenko
Oles Honchar Dnipro National University, Dnipro, Ukraine
kozinenkoalex@gmail.com

Let \(\Omega \subset \mathbb{R}^d \), \(d \geq 2 \), be a bounded domain. A finite collection \(\Delta \) of subdomains \(\omega \subset \Omega \) is called a partition of \(\Omega \) provided that \(\omega \cap \omega' = \emptyset \), for any \(\omega, \omega' \in \Delta, \omega \neq \omega' \), and \(\sum_{\omega \in \Delta} |\omega| = |\Omega| \), where \(|\cdot| \) is the Lebesgue measure. We call a partition \(\Delta \) convex if every cell \(\omega \in \Delta \) is convex, and for \(N \in \mathbb{N} \), denote by \(D_N \) the set of all convex partitions of \(\Omega \) comprising \(N \) cells.

For \(1 \leq q \leq \infty \) and \(k \in \mathbb{N} \), by \(W^k(\Omega) \) we denote the standard Sobolev space of functions \(f : \Omega \to \mathbb{R} \) endowed with the semi-norm

\[
|f|_{W^k_q(\Omega)} = \sum_{\alpha \in \mathbb{Z}^d : |\alpha| = k} \|D^\alpha f\|_{L^q(\Omega)},
\]

where \(\alpha \in \mathbb{Z}^d \) is the multi-index.

For a partition \(\Delta \) of \(\Omega \), we denote by \(S(\Delta) \) the space of functions \(s : \Omega \to \mathbb{R} \) constant on every \(\omega \in \Delta \). For \(1 \leq p \leq \infty \), we define the error of the best \(L_p \)-approximation of a function \(f : \Omega \to \mathbb{R} \) by piecewise constant functions on \(N \) cells:

\[
E_N(f)_p := \inf_{\Delta \in D_N} \inf_{s \in S(\Delta)} \|f - s\|_{L_p(\Omega)}.
\]

It was established in [1] that for \(f \in W^1_q(\Omega) \), the quantity \(E_N(f)_p \) behaves as \(O(N^{-1/d}) \) as \(N \to \infty \) provided that \(\frac{1}{d} + \frac{1}{p} - \frac{1}{q} > 0 \). O. Davydov in [2] constructed an approximation method with anisotropic partitions allowing to improve the estimate of the order of \(E_N(f)_p \) to \(O(N^{-2/(d+1)}) \) as \(N \to \infty \) for functions \(f \in W^2_p(\Omega) \). He also indicated that this \(\frac{2}{d+1} \) is the saturation order of piecewise constant approximation. In the current work we were able to estimate the order of \(E_N(f)_p \) for functions \(f \in W^2_q(\Omega) \) for a wide range of parameters \(p \) and \(q \), and show that such approximation order can be achieved by a sort of greedy algorithms.

Theorem 1. Let \(\Omega \subset \mathbb{R}^d \) be a bounded domain, \(1 \leq p \leq \infty \) and \(1 \leq q \leq \infty \) be such that \(\frac{2}{d+1} + \frac{1}{p} - \frac{1}{q} \geq 0 \), and let \(f \in W^2_q(\Omega) \). Then

\[
E_N(f)_p \leq C(d,p,q)N^{-\frac{2}{d+1}} \left(|f|_{W^2_q(\Omega)}^q + |f|_{W^2_q(\Omega)}^q\right)^{\frac{1}{q}},
\]

with the constant \(C(d,p,q) \) independent on \(f \).

Joint work with: Prof. O. Davydov, Prof. D. Skorokhodov.

References
