Computation of the symmetries of a rational ruled surface

Juan G. Alcázar
Universidad de Alcalá (Madrid, Spain)
juange.alcazar@uah.es

The symmetries of a surface S are the orthogonal transformations $f(x)=\mathbf{Q} x+\mathbf{b}, x \in R^{3}, \mathbf{Q} \in R^{3 \times 3}$, $\mathbf{b} \in R^{3}$, leaving S invariant. Examples of symmetries are the symmetries with respect to a plane (planar symmetries), symmetries with respect to a line (axial symmetries), symmetries with respect to a point (central symmetry) or rotational symmetries (rotations leaving a surface invariant). Given a ruled rational surface, defined by means of a proper (i.e. generically injective) parametrization

$$
\mathbf{x}(t, s)=\mathbf{p}(t)+s \mathbf{q}(t)
$$

we provide an algorithm to determine the symmetries of the surface. The key idea is to prove that any symmetry of the surface corresponds to a birational transformation $\varphi(t, s)=\left(\varphi_{1}(t, s), \varphi_{2}(t, s)\right)$ in the parameter space (i.e. the t, s-plane) whose structure can be predicted, and which can be explicitly computed. The method, up to a certain extent, generalizes to ruled surfaces some ideas used in $[1,2]$ to compute the symmetries of rational curves and polynomially parametrized surfaces.

Joint work with: Emily Quintero.

References

[1] J.G. Alcázar, C. Hermoso. Involutions of Polynomially Parametrized Surfaces. Journal of Computational and Applied Mathematics, 294: 23-38, 2016.
[2] J.G. Alcázar, C. Hermoso, G. Muntingh. Symmetry detection of rational space curves from their curvature and torsion. Computer Aided Geometric Design, pages 51-65, 1781.

