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The symmetries of a surface S are the orthogonal transformations f(x) = Qx + b, x ∈ R3, Q ∈ R3×3,
b ∈ R3, leaving S invariant. Examples of symmetries are the symmetries with respect to a plane (planar
symmetries), symmetries with respect to a line (axial symmetries), symmetries with respect to a point (central
symmetry) or rotational symmetries (rotations leaving a surface invariant). Given a ruled rational surface,
defined by means of a proper (i.e. generically injective) parametrization

x(t, s) = p(t) + sq(t),

we provide an algorithm to determine the symmetries of the surface. The key idea is to prove that any symmetry
of the surface corresponds to a birational transformation ϕ(t, s) = (ϕ1(t, s), ϕ2(t, s)) in the parameter space (i.e.
the t, s-plane) whose structure can be predicted, and which can be explicitly computed. The method, up to
a certain extent, generalizes to ruled surfaces some ideas used in [1, 2] to compute the symmetries of rational
curves and polynomially parametrized surfaces.
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