Are the degrees of unconstrained and constrained approximation the same? (comonotonicity as example)

Dany Leviatan
Tel Aviv University
leviatan@tauex.tau.ac.il

Let $E_{n}(f)$ denote the degree of approximation of $f \in C[-1,1]$, by algebraic polynomials of degree $<n$, and assume that we know that for some $\alpha>0$ and $N \geq 1$,

$$
n^{\alpha} E_{n}(f) \leq 1, \quad n \geq N
$$

Suppose that f changes its monotonicity $s \geq 0$ times in $[-1,1]$. We are interested in what may be said about its degree of approximation by polynomials of degree $<n$ that are comonotone with f. In particular, if f changes its monotonicity at $Y_{s}:=\left\{y_{1}, \ldots, y_{s}\right\}\left(Y_{0}=\emptyset\right)$ and the degree of comonotone approximation is denoted by $E_{n}\left(f, Y_{s}\right)$, we investigate when can one say that

$$
n^{\alpha} E_{n}\left(f, Y_{s}\right) \leq c(\alpha, s, N), \quad n \geq N^{*}
$$

for some N^{*}. Clearly, N^{*}, if it exists at all (we prove it always does), depends on α, s and N. However, it turns out that for certain values of α, s and N, N^{*} depends also on Y_{s} and in some cases even on f itself.

Joint work with: I. A. Shevchuk.

References

[1] D. Leviatan and I. A. Shevchuk. Comparing the degrees of unconstrained and shape preserving approximation by polynomials. J. Approx. Theory, 211: 16-28, 2016.
[2] D. Leviatan, D. V. Radchenko and I. A. Shevchuk. Positive results and counterexamples in comonotone approximation. Constr. Approx., 36: 243-266, 2012.
[3] D. Leviatan, I. A. Shevchuk and O. V. Vlasiuk. Positive results and counterexamples in comonotone approximation II. J. Approx. Theory, 179: 1-23, 2014.

