Are the degrees of unconstrained and constrained approximation the same? (comonotonicity as example)

Dany Leviatan Tel Aviv University leviatan@tauex.tau.ac.il

Let $E_n(f)$ denote the degree of approximation of $f \in C[-1, 1]$, by algebraic polynomials of degree < n, and assume that we know that for some $\alpha > 0$ and $N \ge 1$,

$$n^{\alpha}E_n(f) \le 1, \quad n \ge N.$$

Suppose that f changes its monotonicity $s \ge 0$ times in [-1, 1]. We are interested in what may be said about its degree of approximation by polynomials of degree < n that are commonotone with f. In particular, if f changes its monotonicity at $Y_s := \{y_1, \ldots, y_s\}$ $(Y_0 = \emptyset)$ and the degree of commonotone approximation is denoted by $E_n(f, Y_s)$, we investigate when can one say that

$$n^{\alpha}E_n(f, Y_s) \le c(\alpha, s, N), \quad n \ge N^*,$$

for some N^* . Clearly, N^* , if it exists at all (we prove it always does), depends on α , s and N. However, it turns out that for certain values of α , s and N, N^* depends also on Y_s and in some cases even on f itself.

Joint work with: I. A. Shevchuk.

References

- D. Leviatan and I. A. Shevchuk. Comparing the degrees of unconstrained and shape preserving approximation by polynomials. J. Approx. Theory, 211: 16–28, 2016.
- [2] D. Leviatan, D. V. Radchenko and I. A. Shevchuk. Positive results and counterexamples in comonotone approximation. *Constr. Approx.*, 36: 243–266, 2012.
- [3] D. Leviatan, I. A. Shevchuk and O. V. Vlasiuk. Positive results and counterexamples in comonotone approximation II. J. Approx. Theory, 179: 1–23, 2014.