The optimal choice of the shape parameter in smooth RBFs

Lin-Tian Luh
Providence University of Taiwan
ltluh@pu.edu.tw

Abstract

The main purpose of this report is to present concrete and useful criteria for choosing the constant c contained in the famous radial function $$
\begin{equation*} h(x):=(-1)^{\left\lceil-\frac{\beta}{2}\right\rceil}\left(c^{2}+|x|^{2}\right)^{\frac{\beta}{2}}, \beta \in R \backslash 2 N_{\geq 0}, c>0 \tag{1} \end{equation*}
$$ which is called multiquadric for $\beta>0$ and inverse multiquadric for $\beta<0$, respectively. The optimal choice of c is a longstanding question and has obsessed many experts in the field of radial basis functions(RBFs). Most time what people can do is just making experiments and try to build a model to predict the influence of c , for some special cases. Here, we make a lucid clarification for its influence on the error estimates and show it with a concrete function, denoted by $M N(c)$. The approximated functions lie in a function space which is equivalent to Gaussians' native space, and is denoted by E_{σ}. Then, $\left|f(x)-s_{f}(x)\right| \leq M N(c) \cdot F(\delta)$, for all $f \in E_{\sigma}$, where s_{f} is the frequently used interpolation function constructed by (1) and δ is the fill distance which measures the spacing of the data points. Both $M N(c)$ and $F(\delta)$ contribute to the error bound, but $M N(c)$ is more influential. The constant σ describes the rate of decay for the Fourier transform of f.

We find $M N(c)$ depends on five parameters, β, σ, the dimension n , the domain size, and the fill distance δ. So the optimal choice of c which minimizes the value of $M N(c)$ also depends on the five parameters. There are three cases. We offer two of them here. In the following definitions b_{0} controls the domain size of the approximated functions and is roughly speaking the diameter of the domain. The constant ρ depends on n and β and is usually equal to 1 or a bit greater than 1 .

Case1. $\beta<0,|n+\beta| \geq 1$ and $n+\beta+1 \geq 0$ Let $f \in E_{\sigma}$ and h be as in (1). Then
where

$$
\xi^{*}=\frac{c \sigma+\sqrt{c^{2} \sigma^{2}+4 \sigma(n+\beta+1)}}{4} .
$$

Case3. $\beta>0$ and $n \geq 1$ Let $f \in E_{\sigma}$ and h be as in (1). Then

$$
M N(c):= \begin{cases}\sqrt{8 \rho} c^{\frac{\beta-n-1}{4}}\left\{\frac{\left(\xi^{*}\right)^{\frac{1+\beta+n}{2}} e^{c \xi^{*}}}{e^{\frac{\left(\xi^{*}\right)^{2}}{\sigma}}}\right\}^{1 / 2}\left(\frac{2}{3}\right)^{\frac{c}{24 \rho \delta}} & \text { if } c \in[24 \rho \delta, \\ \sqrt{\frac{2}{3 b_{0}}} c^{\frac{1+\beta-n}{4}}\left\{\frac{\left.\left(\xi^{*}\right)^{\frac{1+\beta+n}{2}} \frac{b_{0}}{2}\right),}{e^{\left(\frac{\left.\left(\xi^{*}\right)\right)^{*}}{\sigma}\right.}}\right\}^{1 / 2}\left(\frac{2}{3}\right)^{\frac{b_{0}}{2 \delta}} & \text { if } c \in\left[12 b_{0} \rho, \infty\right),\end{cases}
$$

where

$$
\xi^{*}=\frac{c \sigma+\sqrt{c^{2} \sigma^{2}+4 \sigma(1+\beta+n)}}{4} .
$$

All the functions $M N(c)$ can be shown by a beautiful curve, called MN curve, whose lowest point corresponds to the optimal value of c. The value of $M N(c)$ reaches $1 \mathrm{E}-61$ when δ is of reasonable size. Since $F(\delta)$ also contributes to the error bound, the actual error is much smaller than $1 \mathrm{E}-61$.

